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The paper gives a justification for a well-known method in the applied 
theory of gyroscopes [ 1-6 1 . 

1. Consider the general case of motion of a stabilized gYrosconic 
system, assuming an arbitrary dependence on time of the motion of the 
base and of the mass of the gyroscopic system. Also the proper rotations 
[spin 1 of the gyroscopes are assumed to be nonstationary, 

The kinetic energy of a gyroscopic system with r gyroscopes and 6 
positional coordinates qi has the form 

T = Tgt + 2-1’ + T,’ + (1.1) 

Here T2’, ‘fl’ and To’ denote the quadratic. linear and zero form in 
terms of positional velocities pi respectively; #k are cyclic coordinates, 
denoting the angles of proper rotations of the gyroscopes, CL is the 
axial moment of inertia of the kth gyroscope, a.’ is the cosine of the 
angle between the angular velocity vector qj anJd the axis of the kth 
gyroscope, aok Is the projection of the angular velocity of the base on 
the axis of the kth gyroscope. 

The coefficients aik and gOk depend on the positional coordinates and 
time. 

. 

Let the generalized usual and reaction forces [ 7 1, 
the cyclic coordinates. be explicit functions of time. 
tions of the second kind for the cyclic coordinates +& 

&+ i; Ujk~j+ Uok =H+h, 

j=-1 

corresponding to 
The Lagrange equa- 
are 

(1.2) 

where H, being a constant, will be considered SufficientlY large, H > hk 
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and hk are functions of time containing P - 1 constants. 

Introducing the Routh function 

the Lagrange equations of the second kind for the positional coordinates 
assume the form 

(1.3) 

The notations used for the derivatives are those from the mechanics 
of variable mass [7 1, the masses being considered as fixed when cal- 
culating these derivatives. ‘i denote generalized reaction forces. 

By virtue of (1.1) and (1.2) the Routh function has the form 

R = Tz’ + T,’ + To’ j- i c, (@ $ hk) ( i ajk ii -/- aok )--$ i ck (H i_ hk)’ (1.4) 
k=l j=l k=l 

where the last term is an explicit function of time which, when writing 
down the equations (1.3), can be omitted. For a stabilized gyroscopic 
system it is in order to consider the linearized equations. 

Therefore, restricting ourselves in the equations (1.3) to small terms 
of the first order with respect to qi and qi, we obtain equations of the 
form 

aiiij -t_ (bij + Hgii) ii + (Cij + Hd,j )qj = fi + RF, (1.5) 

Here II aij II is the matrix of a positive definite quadratic form, the 
coefficients in equations (1.5) are explicit functions of time which do 
not depend on the parameter H. 

Here and below the presence of repeated indices in the factors denotes 
summation. For stabilized gryoscopic systems the proper motions of the 
system, determined by the general solution of the corresponding homo- 
geneous system of equations (1.5), are bounded and cannot be of higher 
order than zero with respect to H. 

Investigating gyroscopic systems El-6 I, usually the method of applied 

theory of gyroscopes is used. The equations of motion obtained by this 

method do not take into account the kinetic moments of the elements of 

suspension of the gyroscopic system nor those of the gimbals of the gyro- 

scopes, nor the equatorial components of the kinetic moments of the 

rotors themselves, nor the kinetic moments of the motors. Therefore, 
according to the method of applied theory of gyroscopes the kinetic energy 

and the Routh function have respectively the forms (1.1) and (1.4) in 
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which 

Tx’ = Ti’= T,’ = 0 

Equations (1.2) and the generalized forces Qi + pi have the same form. 

Equations (1.5) can be written in the form 

(bij* + Hgij) ii + (cij* + JSdij) gj = fi* + HF, (1.6) 

Here the asterisk denotes that the indicated coefficients differ from 

those used earlier. For convenience the positional coordinates in this 

case are denoted by qj. 

Renarks. (a) In real gyroscopic systems the coefficients dij and Fi 

can be of the order of the angular velocity of Barth’s rotation, the 

latter being a sufficiently small quantity, while the coefficients cij 

can be of the order of the pendulum momentum which for certain gyroscopic 

devices is close to the quantity H. Therefore, in the case of a concrete 

gyroscopic system its particular properties must be taken into account. 

(b) If the generalized usual and reaction forces are not explicit 

functions of time, we arrive at the equations of the form (1.5) and (1.61, 

if from the consideration of the Lagrange equations of the second kind 

for the cyclic coordinates, we can determine the functions q$ = &(pi, 

Qi> t). 

2. Assume that the determinant of the matrix of the gyroscopic terms 

I( g.. 11 is different from zero and consider the solutions of the equations 
(1.8 corresponding to arbitrary initial conditions gio = gio. The vari- 

ables gi are of the order of the initial values, i.e. of the order zero 

with respect to H. The order of qi is not greater than zero. Let gi be of 

a certain order 0’ with respect to H. Consider the solution of equations 

(2.1) 

corresponding to the initial conditions g. ’ = gjo. 
11 

BY virtue of equations (1.61 and (2.1) we obtain for the variables 

‘i = qii - gi the equations 

(H-lbij + gij) "j t 

from which follows 

Denote by qi (1) the motion of the gyroscopic system 

ing to the initial conditions 

(H-Q + dij) zj = H-’ [(a,,* - bij) & + (cij* - cij) gj + fi - fi’l 

(2.2) 

(1.5) correspond- 
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qjw = qjc, [bij (0) -; Hgij (O)] p0 $ [Cij (0) 4 

of formulas (1.5), (2. 1) and 

qil are particular solutions, with 

fAllowing system of equations 

- Hdij (O)] qj” --= ,f, (171 + HF, (0) (2.3) 

(2.3) the variables yi = 

zero initial values, of the 

(2.4) 

From formulas (2.2) and (2.4) it follows that the variables y. and 

yj are of the order 0”, 0” being the largest of the quantities OJ’ and ffl. 

The solution of equations (1.5) with arbitrary initial values q.‘, 

qioV is equal to q. = q.(l) + q.(‘), where q.(‘) is the solution of’the 

corresponding homoieneo:s equations of systei (1.5), having the initial 

values 

qiw = 0, &2,0 = b; - &(‘Y (2.5) 

Putting T = Ht and denoting by primes the derivatives with respect to 

T, we obtain 

aijqjW + (H-lbij + gij) qjW + H-2 (cij + Hdij) qjW = 0 

Consider the solution corresponding to the initial values (2.5) of 

the following system of equations 

aijq;2 + (H-‘bij + gij~ Qjz’ = 0 (2.6) 

The variables 9.2’ have the same order with respect to H as the initial 
values, i.e. IT1, &he variables zj = qi are particular solutions, 

with zero initial values, of the following equations 

aijzj” + (H-lbii -j- gij) zj’ + HTZ (cii + Hdij) zj = - He2 (Cij + Hdij) Qjz (2.7) 

Solving equations (2.6) with respect to ~~2’ and integrating with 

respect to f , we obtain [ 8 ] that the order of q .2 is equal to Kf. Com- 

puting the particular solution of equations (2.7 J corresponding to zero 

initial values, the integration with respect to r is to be extended from 

0 to Ht. Therefore we obtain ( zj', zj 1 = o(,T1). 

Consequently we obtain the following estimates 

Qi = gi + O”? ii = gi + b.JZ, + 0” 

which serve as the basis for the applied theory of gyroscopes. It should 

be emphasized that tj ,is of the order zero with respect to H and in the 
case under consideration qi (2) cannot be replaced by the velocities qi2. 
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Also it cannot be asserted that the order of qil is equal to K-l as is 

the case for gyroscopic systems on a fixed base [8 1. 

The result obtained above can be immediately extended to the case of 

an automatically regulated gyroscopic system with k additional equations 

aijQj + (bij + Hgij) bj + (Cij+ Hdij) Qj + eiv b, + f ivqv = fi + HF, 

A,,;, + BBvhv + C,vqu + D,jbj + EpjQj = fg + HJ’, 
(2.8) 

Here the indices ~1 and v vary from s + 1 to s + k and correspond to 

the additional equations of automatic damping. Also in this case the 

passage to simplified equations, obtained by dropping the terms aijqj in 

the first s equations of system (2.81, leads to equations in which terms 

of the order equal to the largest of Ki and of the order of the accel- 

erations qj in the simplified equations, are not taken into account. 

3. As an illustrative example consider Sperry’s ship gyrocompass 

“Mark II” [ 3 1. If we assume that the ship moves with a constant velo- 

city and neglect the eastward component of the velocity when compared 

with the circumferential velocity of Earth’s rotation which on the equator 

assumes the value of 1670 km/hr, then the equations of motion have the 

form [ 3 I 
A~+Hfi+HQcoscpa= Hz 

B’B - Hi + (1P + HQ cos ‘p) fJ = HQ sin 7 (3.1) 

where a and @ are the angles of inclination of the axis of the gyro- 

compass, A and B are the moments of inertia, IP the pendulum moment, uN 

the projection of the velocity of the ship along the direction “north”, 

R = 6370 km is the radius of the Earth, fl = 7.29 x 10’5sec-1 is the 

angular velocity of the Earth’s rotation and H = 2.76 x 109g cm2/sec. 

The forced solution of system (3.1) has the form 

UN a* = - 
RQcoscp’ 

Hf.2 sin ‘p 
B*= HSZcoscp+W 

In order to have p* small, the pendulum moment ZP must be selected 

much larger than HR. For the Sperry compass IP = 7.23 x 10’ dyn cm2, 

i.e. the order is close to H, further Ha= 2.01 x lo5 g cm2/sec2. 

Dropping the second order derivatives in system (3.1) we arrive at 

equations of the form (2.1) 

-HH&l+(ZP+HQcoscp)~l=HSZsincp, HB1+HRcoscpal=H $ (3.2) 

In deriving equations (3.11, the kinetic moments of the elements of 

suspension and of the gimbals of the gyroscopes and also the kinetic 

moments of the motors have not been taken into account. Therefore. in 
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the case under consideration equations (1.6) 

Differentiating equations (3.2) we obtain 

. . / ‘N 

have the form (3.2). 

al=H-l(lP+HQ(oscp) \-$-Qalcoscp 

(3.3) 

Since 

~~=~2sincpcoscp-H-1~coscp(1P+H~cos~)~1 

v,,,R-1 < .Q < IPH-1, 

the order 0’ for the Sperry compass is equal to the order of lPRH1. We 

have lPflK_l = 2 x 10W6sec2. Therefore, the order of 0’ is close to H-l”, 

and to within terms of this order, the variables ai and pi replace a 

and 0. 

As an example for the additional equation of automatic damping we can 

take the equation of flow for the damping fluid in the gyrocompass of 

Anschutz [ 3 1 
e=-F(Bff.3) 

where F= const is a factor of flow and 8 is the angle of inclination of 

the damping fluid. If we neglect the term lfn cos 4 as compared with IP, 

then the simplified equations assume the form of the well-known equations 

of Geckeler-Krylov for the uniform motion of the ship 

- HaI + iPpl+ cO1 = HSl sin ‘p, 

VN 
fil + i2 co9 pal = R, 6, = - F (PI + ir,, 

Hence, the motion obtained from these equations determines the actual 

motion of the gyroscopic system to within terms of the order equal to the 

largest of the quantities K-i, ZPflifl and Hfi I-‘P-l cos (b. 
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